
Data warehousing with
PostgreSQL

Audience

•

• Case of one PostgreSQL node data warehouse

– This talk does not directly address multi-node distribution of
data

Limitations on disk usage and concurrent access

– No rule of thumb

– Depends on a careful analysis of data flows and requirements

• Small/medium size businesses

Summary

• Data warehousing introductory concepts

• PostgreSQL strengths for data warehousing

• Data loading on PostgreSQL

• Analysis and reporting of a PostgreSQL DW

• Extending PostgreSQL for data warehousing

• PostgreSQL current weaknesses

Part one: Data warehousing basics

• Business intelligence

• Data warehouse

• Dimensional model

• Star schema

• General concepts

Business intelligence & Data warehouse

• Business intelligence: “skills, technologies,
applications and practices used to help a business
acquire a better understanding of its commercial
context”

• Data warehouse: “A data warehouse houses a
standardized, consistent, clean and integrated form
of data sourced from various operational systems in
use in the organization, structured in a way to
specifically address the reporting and analytic
requirements”

– Data warehousing is a broader concept

A simple scenario

PostgreSQL = RDBMS for DW?

•

• The typical storage system for a data warehouse is a
Relational DBMS

Key aspects:

– Standards compliance (e.g. SQL)

– Integration with external tools for loading and analysis

• PostgreSQL 8.4 is an ideal candidate

Example of dimensional model

• Subject: commerce

• Process: sales

• Dimensions: customer, product

– Analyse sales by customer and product over time

Star schema

General concepts

•

• Keep the model simple (star schema is fine)

• Denormalise tables

• Keep track of changes that occur over time on
dimension attributes

Use calendar tables (static, read-only)

Example of calendar table

-- Days (calendar date)

CREATE TABLE calendar (

-- days since January 1, 4712 BC

id_day INTEGER NOT NULL PRIMARY KEY,

sql_date DATE NOT NULL UNIQUE,

month_day INTEGER NOT NULL,

month INTEGER NOT NULL,

year INTEGER NOT NULL,

week_day_str CHAR(3) NOT NULL,

month_str CHAR(3) NOT NULL,

year_day INTEGER NOT NULL,

year_week INTEGER NOT NULL,

week_day INTEGER NOT NULL,

year_quarter INTEGER NOT NULL,

work_day INTEGER NOT NULL DEFAULT '1'

...

);

SOURCE: www.htminer.org

http://www.htminer.org/

Part two: PostgreSQL and DW

• General features

• Stored procedures

• Tablespaces

• Table partitioning

• Schemas / namespaces

• Views

• Windowing functions and WITH queries

General features

•

• Connectivity:

– PostgreSQL perfectly integrates with external tools or
applications for data mining, OLAP and reporting

Extensibility:

– User defined data types and domains

– User defined functions

• Stored procedures

Stored Procedures

• Key aspects in terms of data warehousing

• Make the data warehouse:

– flexible

– intelligent

• Allow to analyse, transform, model and deliver data
within the database server

Tablespaces

•

•

• Internal label for a physical directory in the file
system

Can be created or removed at anytime

Allow to store objects such as tables and indexes on
different locations

• Good for scalability

• Good for performances

Horizontal table partitioning 1/2

• A physical design concept

• Basic support in PostgreSQL through inheritance

Views and schemas

•

• Views:

– Can be seen as “placeholders” for queries

– PostgreSQL supports read-only views

– Handy for summary navigation of fact tables

Schemas:

– Similar to the “namespace” concept in OOA

– Allows to organise database objects in logical groups

Window functions and WITH queries

• Both added in PostgreSQL 8.4

• Window functions:

– perform aggregate/rank calculations over partitions of the
result set

– more powerful than traditional “GROUP BY”

• WITH queries:

– label a subquery block, execute it once

– allow to reference it in a query

– can be recursive

Part three: Optimisation techniques

• Surrogate keys

• Limited constraints

• Summary navigation

• Horizontal table partitioning

• Vertical table partitioning

• “Bridge tables” / Hierarchies

Use surrogate keys

• Record identifier within the database

• Usually a sequence:
– serial (INT sequence, 4 bytes)

– bigserial (BIGINT sequence, 8 bytes)

• Compact primary and foreign keys

• Allow to keep track of changes on dimensions

Limit the usage of constraints

• Data is already consistent

• No need for:

– referential integrity (foreign keys)

– check constraints

– not-null constraints

Implement summary navigation

•

•

• Analysing data through hierarchies in dimensions is
very time-consuming

Sometimes caching these summaries is necessary:

– real-time applications (e.g. web analytics)

– can be achieved by simulating materialised views

– requires careful management on latest appended data

• Skytools' PgQ can be used to manage it

Can be totally delegated to OLAP tools

Horizontal (table) partitioning

•

• Partition tables based on record characteristics (e.g.
date range, customer ID, etc.)

Allows to split fact tables (or dimensions) in smaller
chunks

• Great results when combined with tablespaces

Vertical (table) partitioning

• Partition tables based on columns

• Split a table with many columns in more tables

• Useful when there are fields that are accessed more
frequently than others

• Generates:

– Redundancy

– Management headaches (careful planning)

Bridge hierarchy tables

• Defined by Kimball and Ross

• Variable depth hierarchies (flattened trees)

• Avoid recursive queries in parent/child relationships

• Generates:

– Redundancy

– Management headaches (careful planning)

Example of bridge hierarchy table
id_bridge_category

category_key

category_parent_key

distance_level

bottom_flag

top_flag

| integer | not null

| integer | not null

| integer | not null

| integer | not null

| integer | not null default 0

| integer | not null default 0

id_bridge_category | category_key | category_parent_key | distance_level | bottom_flag | top_flag

--------------------+--------------+---------------------+----------------+-------------+----------

1 | 1 | 1 | 0 | 0 | 1

2 | 586 | 1 | 1 | 1 | 0

3 | 587 | 1 | 1 | 1 | 0

4 | 588 | 1 | 1 | 1 | 0

5 | 589 | 1 | 1 | 1 | 0

6 | 590 | 1 | 1 | 1 | 0

7 | 591 | 1 | 1 | 1 | 0

8 | 2 | 2 | 0 | 0 | 1

9 | 3 | 2 | 1 | 1 | 0

SOURCE: www.htminer.org

http://www.htminer.org/

Part four: Data loading

• Extraction

• Transformation

• Loading

• ETL or ELT?

• Connecting to external sources

• External loaders

• Exploration data marts

Extraction

•

•

• Data may be originally stored:

– in different locations

– on different systems

– in different formats (e.g. database tables, flat files)

Data is extracted from source systems

Data may be filtered

Transformation

• Data previously extracted is transformed

– Selected, filtered, sorted

– Translated

– Integrated

– Analysed

– ...

• Goal: prepare the data for the warehouse

Loading

• Data is loaded in the warehouse database

• Which frequency?

• Facts are usually appended

– Issue: aggregate facts need to be updated

ETL or ELT?

Connecting to external sources

•

•

• PostgreSQL allows to connect to external sources,
through some of its extensions:

– dblink

– PL/Proxy

– DBI-Link (any database type supported by Perl's DBI)

External sources can be seen as database tables

Practical for ETL/ELT operations:

– INSERT ... SELECT operations

External tools

•

•

• External tools for ETL/ELT can be used with
PostgreSQL

Many applications exist

– Commercial

– Open-source

• Kettle (part of Pentaho Data Integration)

Generally use ODBC or JDBC (with Java)

Exploration data marts

• Business requirements change, continuously

• The data warehouse must offer ways:

– to explore the historical data

– to create/destroy/modify data marts in a staging area

• connected to the production warehouse

• totally independent, safe

– this environment is commonly known as Sandbox

Part five: Beyond PostgreSQL

• Data analysis and reporting

• Scaling a PostgreSQL warehouse with PL/Proxy

Data Analysis and reporting

• Ad-hoc applications

• External BI applications

– Integrate your PostgreSQL warehouse with third-party
applications for:

• OLAP

• Data mining

• Reporting

– Open-source examples:

• Pentaho Data Integration

Scaling with PL/Proxy

•

• PL/Proxy can be directly used for querying data from a
single remote database

PL/Proxy can be used to speed up queries from a local
database in case of multi-core server and partitioned
table

• PL/Proxy can also be used:

– to distribute work on several servers, each with their own
part of data (known as shards)

– to develop map/reduce type analysis over sets of servers

Part six: PostgreSQL's weaknesses

• Native support for data distribution and parallel
processing

• On-disk bitmap indexes

• Transparent support for data partitioning

• Transparent support for materialised views

• Better support for “temporal” needs

Data distribution & parallel processing

• Shared nothing architecture

• Allow for (massive) parallel processing

• Data is partitioned over servers, in shards

• PostgreSQL also lacks a DISTRIBUTED BY clause

• PL/Proxy could potentially solve this issue

On-disk bitmap indexes

• Ideal for data warehouses

• Use bitmaps (vectors of bits)

• Would perfectly integrate with PostgreSQL in-memory
bitmaps for bitwise logical operations

Transparent table partitioning

• Native transparent support for table partitioning is
needed
– PARTITION BY clause is needed

– Partition daily management

Materialised views

• Currently can be simulated through stored procedures
and views

• A transparent native mechanism for the creation and
management of materialised views would be helpful

– Automatic Summary Tables generation and management
would be cool too!

Temporal extensions

• Some of TSQL2 features could be useful:

– Period data type

– Comparison functions on two periods, such as

• Precedes

• Overlaps

• Contains

• Meets

Conclusions

•

• PostgreSQL is a suitable RDBMS technology for a single
node data warehouse:

– FLEXIBILITY

– Performances

– Reliability

– Limitations apply

• For open-source multi-node data warehouse, use
SkyTools (pgQ, Londiste and PL/Proxy)

If Massive Parallel Processing is required:

– Custom solutions can be developed using PL/Proxy

– Easy to move up to commercial products based on PostgreSQL
like Greenplum, if data volumes and business requirements
need it

Recap

• Data warehousing introductory concepts

• PostgreSQL strengths for data warehousing

• Data loading on PostgreSQL

• Analysis and reporting of a PostgreSQL DW

• Extending PostgreSQL for data warehousing

• PostgreSQL current weaknesses

The Reporting solution
complements Qlik

